Coordinated learning by exploiting sparse interaction in multiagent systems
نویسندگان
چکیده
Multiagent learning provides a promising paradigm to study how autonomous agents learn to achieve coordinated behavior in multiagent systems. In multiagent learning, the concurrency of multiple distributed learning processes makes the environment nonstationary for each individual learner. Developing an efficient learning approach to coordinate agents’ behavior in this dynamic environment is a difficult problem especially when agents do not know the domain structure and at the same time have only local observability of the environment. In this paper, a coordinated learning approach is proposed to enable agents to learn where and how to coordinate their behavior in loosely coupled multiagent systems where the sparse interactions of agents constrain coordination to some specific parts of the environment. In the proposed approach, an agent first collects statistical information to detect those states where coordination is most necessary by considering not only the potential contributions from all the domain states but also the direct causes of the miscoordination in a conflicting state. The agent then learns to coordinate its behavior with others through its local observability of the environment according to different scenarios of state transitions. To handle the uncertainties caused by agents’ local observability, an optimistic estimation mechanism is introduced to guide the learning process of the agents. Empirical studies show that the proposed approach can achieve a better performance by improving the average agent reward compared with an uncoordinated learning approach and by reducing the computational complexity significantly compared with a centralized learning approach. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Learning of coordination: exploiting sparse interactions in multiagent systems
Creating coordinated multiagent policies in environments with uncertainty is a challenging problem, which can be greatly simplified if the coordination needs are known to be limited to specific parts of the state space, as previous work has successfully shown. In this work, we assume that such needs are unknown and we investigate coordination learning in multiagent settings. We contribute a rei...
متن کاملExploiting Independent Relationships in Multiagent Systems for Coordinated Learning
Creating coordinated multiagent policies in an environment with uncertainties is a challenging issue in the research of multiagent learning. In this paper, a coordinated learning approach is proposed to enable agents to learn both individual policies and coordinated behaviors by exploiting independent relationships inherent in many multiagent systems. We illustrate how this approach is employed...
متن کاملA POMDP-based Model for Optimizing Communication in Multiagent Systems
In this paper we address the problem of planning in multiagent systems in which the interaction between the different agents is sparse and mediated by communication. We include the process of communication explicitly as part of the decision process and illustrate how this single-agent model can be used to plan for communication. We also use the single-agent model to plan in the multiagent scena...
متن کاملLearning in Multi-agent Systems with Sparse Interactions by Knowledge Transfer and Game Abstraction
In many multi-agent systems, the interactions between agents are sparse and exploiting interaction sparseness in multiagent reinforcement learning (MARL) can improve the learning performance. Also, agents may have already learnt some single-agent knowledge (e.g., local value function) before the multi-agent learning process. In this work, we investigate how such knowledge can be utilized to lea...
متن کاملCoordinated Learning for Loosely Coupled Agents with Sparse Interactions
Multiagent learning is a challenging problem in the area of multiagent systems because of the non-stationary environment caused by the interdependencies between agents. Learning for coordination becomes more difficult when agents do not know the structure of the environment and have only local observability. In this paper, an approach is proposed to enable autonomous agents to learn where and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Concurrency and Computation: Practice and Experience
دوره 26 شماره
صفحات -
تاریخ انتشار 2014